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Abstract A novel approach is proposed for modeling
loop regions in proteins. In this approach, a prerequisite
sequence-structure alignment is examined for regions
where the target sequence is not covered by the struc-
tural template. These regions, extended with a number
of residues from adjacent stem regions, are submitted to
fold recognition. The alignments produced by fold rec-
ognition are integrated into the initial alignment to
create an alignment between the target sequence and
several structures, where gaps in the main structural
template are covered by local structural templates. This
one-to-many (1: N) alignment is used to create a protein
model by existing protein-modeling techniques. Several
alternative approaches were evaluated using a set of ten
proteins. One approach was selected and evaluated using
another set of 31 proteins. The most promising result
was for gap regions not located at the C-terminus or N-
terminus of a protein, where the method produced an
average RMSD 12% lower than the loop modeling
provided with the program MODELLER. This
improvement is shown to be statistically significant.

Keywords Protein structure prediction Æ Loop
modeling Æ Fold recognition Æ Threading Æ Structurally
variable regions

Introduction

A protein’s function is enabled by its three-dimensional
structure. The determination of protein structures from
sequences of amino acids is essential for our under-
standing of the processes of life and is critical to many
important areas such as drug design. Many methods for
the prediction of protein structure align the target ami-

no-acid sequence to a structural template derived from a
known protein. The conformation of alignment regions
where the target sequence is not covered by the template
structure must be determined by an alternative
approach, termed loop modeling. Together with align-
ment errors, loop modeling is a major limitation of
protein-structure prediction methods [1].

Traditionally, computational methods for protein-
structure prediction are divided into three categories [2]:
(i) comparative or homology modeling, (ii) fold recog-
nition or threading, and (iii) new fold methods or ab
initio methods.

Comparative or homology modeling [3] predicts the
structure primarily based on similarity between the
sequence of the target protein and those of one or more
template proteins of known structure. The comparative
modeling approach is used in tools like MODELLER [1,
3, 4] and SWISS-MODEL [5].

Fold recognition or threading [6] is based on the
observation that a large percentage of proteins adopt
one of a limited number of folds. The result of a fold-
recognition method is a ranking of the folds in a fold
library according to the ‘‘goodness of fit’’ of the
respective alignments, with the best fitting fold consid-
ered the most probable match. When a fold has been
selected, the alignment can be passed to an automatic
comparative modeling program for modeling loops and
side chains, creating a complete three-dimensional
model. Fold-recognition approaches are used in tools
like THREADER [7–9], GenTHREADER [10, 11]
3D-PSSM [12–14], and LOOPP [15–17].

New fold methods [2, 18], are intended to construct
structural models for a protein sequence without direct
relationship to a known structure.

Alignments between the target sequence and a tem-
plate structure are used in both comparative modeling
and fold recognition. These approaches have shown to
be useful for deriving an initial model. However,
improvements are still necessary to overcome missing
structural-template regions in the alignment. This is
achieved by loop modeling.
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Box 408, 54128 Skövde, Sweden
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The word ‘‘loop’’ is surrounded by some termino-
logical confusion. At least two different meanings are
applied to the term. According to van Vlijmen and
Karplus [19], loops are segments that do not correspond
to a-helical or b-strand secondary-structure elements.
Moult [18] defines loops as regions, typically occurring
between secondary-structure elements, where there are
insertions and deletions in the target sequence relative to
that of the template(s), or a local loss of sequence sim-
ilarity. The presence of loops prevents these regions of
the backbone being copied usefully from the template
structure. The term ‘‘structurally variable region’’ (SVR)
is used by Rohl et al. [20] for gaps, insertions, and re-
gions of low-confidence alignment. This is similar to
Moult’s loop definition and the term is better suited for
loops in the context of a sequence-structure alignment,
as it is not burdened by any alternate meaning. When
referring to loops and loop modeling, the definition of
Moult [18] will be used in this paper. We will focus on
the specific case where the target sequence is aligned to a
gap in the template structure. This will be referred to as
a ‘‘gap region.’’ Nothing, however, prevents the method
presented here from being used in the more general
context of SVRs.

Loops are functionally important since they often
contribute to binding sites [1]. Consequently, the impact
of an accurate loop-modeling method would be great.
The existing methods are reasonably accurate for mod-
eling short loop regions, but modeling longer structur-
ally divergent regions is an unsolved problem [20]. Fiser
et al. [1] noted that in the first two Critical Assessment
of Protein Structure Predictions (CASPs) [21, 22] there
was no reliable method available for constructing loops
longer than five residues, but that recently progress had
been made. For example, van Vlijmen and Karplus [19]
suggested an algorithm for loops of nine residues or less.
Rohl et al. [20] presented a promising method for pre-
diction of longer SVRs.

Loop-modeling methods can be grouped into [20] (i)
knowledge-based methods, (ii) de novo or ab initio
strategies, and (iii) combined approaches. Knowledge-
based methods use known protein structures as a source
of loop conformations. Likely conformations are gener-
ally selected based on evaluation using a knowledge-
based potential or rule-based filter, evaluating criteria
such as geometric fit and sequence similarity. In de novo
strategies, loop conformations are generated by methods
such as molecular dynamics, simulated annealing,
exhaustive enumeration or heuristic sampling of a
discrete set of (/1, w) angles, random tweak, or analytical
methods. Combined approaches are hybrids using both
knowledge-based and de novo methods. The suggested
method outlined in this paper shares similarity to
knowledge-based methods in that the method uses
knowledge of existing structures. However, the sequence-
similarity concept traditionally used was expanded to
include fold similarity by sequence threading.

The work presented in this paper expands the search
for loop templates by fold recognition. Fold recognition

is traditionally applied to entire protein chains, finding
global folds. This work, however, was based on the
hypothesis that the conformations of local folds could be
analogous to local folds occurring in other known pro-
teins. This allows a fold-recognition method to be ap-
plied locally to determine the conformation of regions in
a sequence-structure alignment that are not covered by
the main template structure.

Such an approach was used by Svensson et al. [23] in
their prediction of the protein structure of a putative
gene, flowering regulating factor (FRF), in the Arabid-
opsis thaliana genome. Fold recognition using the
THREADER tool assigned a fold that had two long
gaps in the alignment, 10 and 23 residues long, to the
sequence. Fold recognition was applied to these
sequences, assigning to them each an individual fold
with the motivation that this constrained the loop re-
gions in a state closer to the native energy state. In their
study, the MODELLER tool was then used to build a
model with the three folds as templates. Verification of
models was performed using Ramachandran plots [24]
and the software PROCHECK [25]. The best model had
an energy profile similar to that of the template and no
high-energy regions could be detected. The apparently
high quality of the model indicated promise for a fold-
recognition approach to loop modeling. Predictions of a
local-domain structure can also be seen as related to the
approach outlined in this paper in that a short fragment
of sequence is searched for a local fold. Such an ap-
proach has been applied successfully assigning, e.g., the
functionality and domain structure of the RB38 protein
[26].

The aim of the work presented here was to investigate
whether the fold recognition applied to gap regions
could improve the quality of protein models. The basic
principle underlying a fold-recognition approach to gap
regions is described in Fig. 1. An initial sequence-
structure alignment is used as input. Sequence regions
that are not aligned to the template structure are ex-
tracted. These sequence segments are extended with
residues from adjacent stem regions to facilitate sub-
sequent modeling. The extended sequence segments are
submitted to fold recognition and the alignments ob-
tained are integrated into the initial alignment to create a
set of sequence-to-structure equivalences, in this work
called a one-to-many (1: N) alignment because of the
suggested equivalence between one sequence to several
structural templates (in different regions). This align-
ment can be used as input to a conventional comparative
modeling tool to create a protein model. Results indicate
that, for gap regions not located at the C-terminus or
N-terminus of a chain, this is a promising approach.

Materials and methods

Several possible approaches to modeling gap regions by
fold recognition were identified. Two sets of protein
sequences were prepared for evaluation of these ap-
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proaches. The first set consisted of ten protein sequences
and was used to test all combinations of the identified
approaches exhaustively. Based on this evaluation, a
method for modeling gap regions by fold recognition
was proposed. This method was applied to a second set
of 31 protein sequences and the results were analyzed.
The first protein set was named ‘‘training set’’ and the
second ‘‘test set,’’ analogous to terms used in artificial
intelligence.

The GenTHREADER tool was selected for the fold-
recognition tasks in this work on the basis that it is a
representative tool that has been used successfully in a
number of fold-recognition assignments. It is very fast
and reliable [10] and its neural network provides a
combined quality measure.

To predict the gap regions, three different approaches
were suggested for ranking local alignments: (i) by sol-
vation energy, (ii) by alignment score, and (iii) by the
GenTHREADER neural-network score [10]. Loops are
usually located at the surface of a protein [1], corre-
sponding to low solvation energy. This makes a ranking
approach that favors low solvation energy a promising
approach. A ranking favoring a high alignment score
would lead to a fragment-based homology modeling
approach. The score generated by the GenTHREADER
neural network is based on several aspects of alignment
quality including solvation energy, pairwise energy, and
alignment score, possibly allowing for a more balanced
ranking than relying on any single aspect of alignment
quality. All of these features are obtained in the
GenTHREADER output results. The proteins in the
training set were explored using these features, identi-
fying the best combination. In addition to these features,
the length of the stem region, also called the anchor
region, was explored. According to Martı̀-Renom et al.
[3] the conformation of a given segment of a polypeptide
chain must be calculated mainly from the sequence of
the segment itself. However, they note that loops are
generally too short to provide sufficient information
about their local fold, and thus the conformation of a
given segment is also influenced by the core stem regions
that span the loop and by the structure of the rest of the
protein that cradles the loop. The influence of stem re-
gions could be accounted for by including additional
residues on either side of the loop region in the sequence
submitted to fold recognition. Influences from the rest of
the protein structure are unfortunately not as easy to
incorporate in a fold-recognition approach and were not
taken into account. To determine the influence of stem
regions on the results of fold recognition, three different
approaches were suggested for generating the sequence
to submit to fold recognition: one using no stem overlap
and the other two using a stem overlap of three and ten
residues. This allowed for testing the influence of stem
regions on loop conformation.

The selection of protein sets was made based on the
following requirements. First, given an alignment
between each target sequence and a template structure,
each alignment should contain at least one gap region of

ten or more amino acids. This restriction was chosen
since traditional loop-modeling methods are already
capable of accurate prediction of loops up to nine resi-
dues in length [19]. Furthermore, fold recognition is not
suited for short sequences, i.e., a sequence of one residue
in length can be threaded onto any structure. Second,
the proteins should have experimentally determined
structures available. These were needed for the evalua-
tion of protein models. Third, the protein sets should be
sufficiently large to draw conclusions with reasonable
confidence. In related studies van Vlijmen and Karplus
[19] used two protein sets of 13 and 8 proteins, defined
by Leszczynski and Rose [27] and Tramontano and Lesk
[28], respectively. Based on the sizes of these sets, the
minimum size of each set was set to ten proteins. Fourth,
the protein sets should be representative of prediction
targets known to have been used previously in protein-
structure prediction.

Given these requirements, the prediction targets [29,
30] used in CASP4 and CASP5 were selected (see
Table 1). In order to find additional native structures
not known during the publication of the CASP targets, a
FASTA [31] search was carried out for each sequence
against the Protein Data Bank (PDB) [32], using
PDB SearchFields (http://www.rcsb.org/pdb/cgi/query-
Form.cgi?Fasta=1) with the default scoring matrix. For
many of the targets, more than one structure was found.
The search also revealed that ‘‘native’’ structures did not
always have a 100% sequence identity to the CASP
target sequences. The sequence identity between CASP
target sequence and PDB structure was generally either
above 90 or below 70%. Structures with a sequence
identity above 85% were treated as ‘‘native.’’ The lowest
sequence identity of a ‘‘native’’ structure was 87% and
the highest sequence identity for a ‘‘non-native’’ struc-
ture 70%. The sequence identity of the best alignment
for each target is shown in Table 1. For proteins where
several PDB entries were identified as native, one
structure was selected based on E-value and resolution.
One specific chain in each structure was selected for
model evaluation. PDB files were downloaded from the
online version of the PDB (http://www.rcsb.org/pdb/)
during June and July 2004. All structures used are
present in PDB release 200F. Of the original CASP
targets, 110 in total, 15 were removed since no native
structure was found.

Following the method outlined in Fig. 1, fold recog-
nition was initially applied to the entire sequence, fol-
lowed by local template fold recognition of the gap
regions. The PDB files searched also included files not
present at the time of the release of the CASP4/5 se-
quences. This dilutes the competitive issue as present in
CASP.

The reasons for applying the initial fold recognition,
instead of integrating loop conformations into the native
PDB structure with deleted loop regions, were the fol-
lowing. First, as the core of the protein structure affects
the loop configuration, we assume a worst-case scenario
of using little or no knowledge of the native fold. This
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Table 1 CASP targets considered for inclusion in the protein sets

Targeta Lengthb Native
structurec

Native seq.
ID (%)d

Additional
native
structurese

Templatef Template seq.
ID (%)g

Gap regions
of length >9h

T0086 164 1G1B:A 100.0 1FW9, 1G81, 1JD3 1UAE 20.7 0
T0087j 310 1I74:A 98.4 1IR6:A 16.5 2
T0088 156 1OIO:A 100.0 1O9W, 1O9V, 1O9Z 1GQ8:A 16.7 0
T0089k 419 1E4F:T 100.0 1E4G 1BA1 15.3 3
T0090k 209 1G0S:A 100.0 1G9Q, 1GA7, 1KHZ, 1VIQ 1VIU:A 28.3 2
T0091 109 1PUG:A 87.2 1J8B 1MOJ:A 15.6 0
T0092 241 1IM8:A 97.5 1XVA:A 13.3 0
T0093j 160 1MXI:A 100.0 1J85 1IPA:A 21.9 1
T0094 181 1JH6:A 100.0 1JH7, 1FSI 1REC 11.0 0
T0095 244 1H6G:A 97.9 1L7C 1VHN:A 13.1 0
T0096k 239 1HW1:A 100.0 1E2X, 1H9G, 1H9T, 1HW2 1J5Y:A 13.4 2
T0097 105 1G7D:A 100.0 1K6K:A 12.4 0
T0098 121 1FC3:A 100.0 1LQ1 1VI0:A 9.9 0
T0099 56 None n/a n/a n/a n/a
T0100k 342 1QJV:A 100.0 1GQ8:A 31.7 2
T0101k 400 1RU4:A 100.0 1RMG 9.8 1
T0102 70 1O82:A 100.0 1E68, 1O83, 1O84 1KV8:A 7.1 0
T0103 372 1GA6:A 100.0 1GA1, 1GA4, 1KDV,

1KDY, 1KDZ, 1KE1, 1KE2, 1NLU
1SIO:A 30.3 0

T0104k 158 1HTW:A 100.0 1FL9 1RZ3:A 12.7 2
T0105 94 1H5P:A 100.0 1OQJ:A 26.7 0
T0106 128 1IJX:A 100.0 1GVF:A 14.8 0
T0107 188 1I82:A 99.5 1I8A, 1I8U 1ATG 6.4 0
T0108 206 1J84:A 98.9 1J83 1QEX:A 20.4 0
T0109 182 1J9A:A 97.8 1UOC:A 13.2 0
T0110k 128 1JOS:A 100.0 1PA4:A 17.7 1
T0111 431 1E9I:A 100.0 4ENL 50.1 0
T0112 352 1E3J:A 100.0 1LLU:A 24.0 0
T0113 261 1E3W:B 100.0 1E3S, 1E6W, 1SO8 1H5Q:A 23.1 0
T0114 87 1GH5:A 100.0 1G6E 1QCS:A 9.2 0
T0115k 300 1H72:C 100.0 1FWK, 1FWL, 1H73, 1H74 1S4E:B 19.7 1
T0116k 811 1NNE:A 100.0 1EWQ, 1EWR, 1FW6 1TAQ 15.5 6
T0117k 250 1OT3:A 100.0 1J90, 1OE0 1QHI:A 13.6 1
T0118k 149 1M0D:A 100.0 1FZR, 1M0I 1KNY:A 26.2 1
T0119 338 1KRH:A 100.0 1CQX:A 19.8 0
T0120j 336 1IK9:A 98.1 1FU1 1O5Z:A 11.3 2
T0121k 372 1G29:1 98.7 1B0U:A 26.7 1
T0122k 248 1GEQ:A 100.0 2TYS:A 31.0 1
T0123 160 1EXS:A 100.0 1BEB:A 65.4 0
T0124k 242 1JAD:A 97.1 1CUN:A 16.0 2
T0125 141 1GAK:A 100.0 1LIS 16.0 0
T0126 163 1JOB:A 100.0 1F35, 1JOD, 1JYT 1CBY 24.5 0
T0127j 350 1G8P:A 100.0 1FNN:A 11.1 2
T0128k 222 1P7G:A 98.6 1AVM:A 49.3 1
T0129 182 1IZM:A 98.9 1AOX:A 13.2 0
T0130j 114 1NO5:A 100.0 1J0L:A 28.6 1
T0131 100 None n/a n/a n/a n/a
T0132k 154 1NNG:A 100.0 1NJK:A 14.3 1
T0133 312 None n/a n/a n/a n/a
T0134 251 None n/a n/a n/a n/a
T0135 108 None n/a n/a n/a n/a
T0136 523 1ON3:A 100.0 1ON9 1UYR:A 17.4 0
T0137 133 1O8V:A 99.2 1MDC 22.5 0
T0138 135 1M2E:A 100.0 1M2F, 1R8J 1PEY:A 18.5 0
T0139 83 1IYR:A 100.0 1KOY 1S3J:A 18.1 0
T0140 103 1MJC 100.0 3MEF 1LCL 15.5 0
T0141k 187 1J3G:A 100.0 1LBA 23.3 2
T0142 282 1NZH:A 100.0 1NTF 1I9Y:A 24.5 0
T0143 216 1WCZ:A 99.5 1QY6 1P3C:A 22.3 0
T0144 172 None n/a n/a n/a n/a
T0145 216 None n/a n/a n/a n/a
T0146k 325 1NRK:A 97.2 1PJ5:A 11.7 1
T0147 245 1M65:A 100.0 1M68, 1PB0 1J6O:A 13.9 0
T0148 163 1IN0:A 100.0 1DD5:A 15.3 0
T0149k 318 1NIJ:A 100.0 1O5Z:A 9.1 4
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prevents prediction bias from the true fold. Second,
initial threading reveals gap regions not necessarily
corresponding to true loops, while deleted loop regions
in a PDB structure would restrain the gap regions. The

gap regions may include terminal amino acids in a sec-
ondary structure or include additional elements. Initial
threading truly reflects the situations that may occur in a
real prediction situation. Third, using unrestrained gap

Table 1 (Contd.)

Targeta Lengthb Native
structurec

Native seq.
ID (%)d

Additional
native
structurese

Templatef Template seq.
ID (%)g

Gap regions
of length >9h

T0150 102 1H7M:A 100.0 1GO0, 1GO1 1CK9:A 34.0 0
T0151k 164 1UE1:A 100.0 1UE5, 1UE6, 1UE7 1QVC:A 29.0 1
T0152 210 None n/a n/a n/a n/a
T0153j 154 1MQ7:A 100.0 1SIX, 1SJN, 1SLH, 1SM8,

1SMC, 1SNF
1DUP:A 31.6 1

T0154k 309 1MOP:A 99.3 1N2B, 1N2E, 1N2G, 1N2H,
1N2I, 1N2J, 1N2O

1IHO:A 42.9 2

T0155k 133 1NBU:A 100.0 1DHN 33.1 1
T0156 157 1NXJ:A 99.4 1VI4:A 45.9 0
T0157 138 1NMN:A 100.0 1NU0, 1OVQ 1VHX:A 32.6 0
T0158 319 None n/a n/a n/a n/a
T0159 309 1R9L:A 99.4 1R9Q 4MBP 12.6 0
T0160 128 None n/a n/a n/a n/a
T0161k 156 1MW5:A 98.1 1QSP:A 15.4 1
T0162k 286 1IZN:A 100.0 1WER 12.2 1
T0163 369 1NG4:A 99.7 1NG3 1L9F:A 19.0 0
T0164k 166 1IO0:A 100.0 1UW4:B 13.9 1
T0165k 318 1ODT:C 99.4 1L7A, 1ODS 1EVQ:A 17.9 2
T0166k 150 1LJ9:A 100.0 1S3J:A 16.1 1
T0167 185 1M3S:A 100.0 1VIV 1JEO:A 35.6 0
T0168j 327 1MKI:A 96.3 1BTL 11.8 3
T0169 156 1MK4:A 100.0 1GHE:B 16.0 0
T0170 69 1UZC:A 98.6 1J7N:A 8.7 0
T0171 256 1M33:A 97.3 1MT3:A 15.6 0
T0172k 299 1M6Y:A 98.7 1N2X 1B74:A 11.5 3
T0173 303 1Q74:A 100.0 1Q7T 1UAE 17.8 0
T0174j 417 1MG7:A 100.0 1UAE 12.2 8
T0175 248 1NKV:A 97.6 1KPH:A 10.1 0
T0176 100 1N91:A 100.0 1BX4:A 8.0 0
T0177 240 1MW7:A 100.0 1LFP:A 32.1 0
T0178 219 1MZH:A 100.0 1JCL:B 26.9 0
T0179 276 1IY9:A 100.0 1JQ3:C 43.1 0
T0180 53 None n/a n/a n/a n/a
T0181 111 1NYN:A 100.0 1KC6:A 26.1 0
T0182 250 1O0X:A 100.0 1QXW:A 33.3 0
T0183j 248 1O0Y:A 100.0 1MZH:A 41.3 1
T0184k 240 1O0W:A 100.0 1TGO:A 17.5 1
T0185j 457 1J6U:A 98.5 1GQQ:A 29.2 2
T0186 364 1O12:A 97.8 1GKP:A 15.1 0
T0187k 417 1O0U:A 100.0 1UAE 16.8 4
T0188 124 1O13:A 99.2 1EO1:A 27.4 0
T0189 319 1O14:A 100.0 1RKD 15.4 0
T0190 114 None n/a n/a n/a n/a
T0191k 282 1NVT:A 100.0 1NPD:A 33.0 1
T0192 171 None n/a n/a n/a n/a
T0193 211 1R72:A 100.0 1R9L:A 12.3 0
T0194 237 None n/a n/a n/a n/a
T0195 299 None n/a n/a n/a n/a

a CASP target ID
b Number of residues in target sequence
c Structure and chain identified by FASTA and used as reference
for model evaluation
d Sequence identity between the CASP target sequence and the
native structure identified by FASTA
e Additional structures considered as native and thus not used as
templates
f Template structure identified by GenTHREADER and used in
initial alignment

g Sequence identity between the CASP target sequence and the
template structure identified by GenTHREADER
h Number of gap regions longer than nine residues occurring in the
initial alignment generated by GenTHREADER between the
CASP target sequence and the template structure
j Target included in the training set
k Target included in the test set
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regions allows the local fold to influence the core fold in
modeling, which could be considered as more appro-
priate due to the content in the gap.

Treating native protein structures as unknown allows
the method to be implemented as an automatic service.
However, the implication for this in the case of multi-
domain proteins was that the best scored alignment for
any of the domains was used and evaluated, omitting the
other domains. Thus, for multi-domain proteins, models
were only built and evaluated for one domain. Fur-
thermore, fold recognition cannot always find a correct
template, i.e., a false positive fold may be introduced.
Templates with low structural similarity to the native
fold, such as for target T0091; template 1MOJ, and for
target T0161; template 1QSP, will influence the mea-
sured performance negatively in this study since the
entire structure RMSD (see below) was measured.

For each sequence with a known native structure, the
initial sequence-structure alignment was created using
the fold recognition web service GenTHREADER at the
PSIPRED Protein Structure Prediction Server [33]. Fil-
tering options were left at their default settings (masking
of low-complexity regions). The best scoring alignment
for each sequence was selected unless that alignment was
made to one of the native or alternative native structures
for that sequence, in which case the next best alignment
would be chosen. The reasons for ignoring native
structures were to simulate fold recognition of a typical
sequence, for which no native structure would be
available and to produce alignments containing gap
regions. Each alignment was examined for regions where
the target sequence was aligned to a gap in the template
structure. Fifty-four target sequences without such gap
regions of at least ten residues were removed. The final
number of targets was 41, each containing at least one
gap region of at least ten residues in length. These were

divided randomly into a training set of ten proteins (see
Table 2) and a test set of 31 proteins (see Table 3).

All gap-region sequences in the training set were ex-
tracted and submitted to GenTHREADER. All of
GenTHREADER’s filtering options were disabled.
Three sequences were submitted for each gap region, one
for each stem-overlap approach. From the results re-
turned by GenTHREADER, the different ranking ap-
proaches were used to create three alternative local
alignments for each sequence. Alignments to native
structures were ignored. The local alignments of the gap-
region sequences were integrated into the initial se-
quence-structure alignment. This way, 1: N alignments
were created consisting of the target sequence, the main
template structure and one local template structure for
each gap region. The geometric transformation for
integrating the local template structure of the gap region
into the main template was enabled using MODELLER
spatial restraints. That is, MODELLER works by satis-
fying the restraints provided by the template structures
(sequence-structure equivalences; the 1: N alignment),
i.e., both from the main template and local template.
Unsatisfied restraints will create a poor model in this
way. Such an instance will be revealed by the evaluation
(see below). In total, nine such 1: N alignments were
created from each initial alignment, one for each com-
bination of stem overlap and alignment ranking. The
MODELLER tool (version 6v2) was used to build
models for all ten alignments for each target (the initial
alignment and the nine 1: N alignments). The newly re-
leased MODELLER version 8v0 adopts the same tech-
nique as the version used here, i.e., it is applicable for the
framework performed in this study. Five models were
built from each alignment. The models differed from
each other as a result of MODELLER’s default model-
ing protocol, i.e., a uniform randomization of the

Fig. 1 The proposed approach
to loop modeling by fold
recognition
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Cartesian coordinates before terminating energy mini-
mization to rectify bad stereochemistry (200 cycles of
molecular dynamics; default in MODELLER). Here we
used a randomization of 4 Å as recommended in the
MODELLER manual, which typically results in models
after energy minimization within 1 Å of each other. That
is, the default parameters of MODELLER were used,
with a random seed of �12312. The number of models
created for each target sequence, i.e., five, generated an
approximation of models in or close to the energy min-
imum given the sequence to template equivalences. That
is, in order to reduce the effect of outliers, the evaluation
was based on the approximation over five models. For
the purpose of this study we generated 50 models for the
training set and 145 models for the test set.

Models built using initial alignments containing gap
regions (initial models) and models built using 1: N
alignments created by one of the proposed approaches
(final models) were evaluated using three different
measures of model quality; (i) root mean square devia-
tion (RMSD) for all Ca atoms of the created model from
the native protein chain, (ii) RMSD from model to na-
tive chain for all Ca atoms in each gap region, and (iii)
Ramachandran plot [24] for each model. RMSD values
were obtained by fitting using the McLachlan algorithm
[34] as implemented in the program ProFit (Martin,
ACR, http://www.bioinf.org.uk/software/profit/). Since
we wanted to evaluate the entire fold, the RMSD value
was calculated for the entire protein chain, not only the

core regions. This might thus introduce some difficulty
when validating the models since the loop configuration
might be mobile. However, using the entire chain
enables measuring the influence of the local loop

Table 2 Gap regions in training set

Targeta Regionb Lengthc Missing
residuesd

T0087 62–71 10 0
T0087 152–167 16 0
T0093 149–160e 12 4
T0120 205–215 11 4
T0120 283–336e 54 54
T0127 95–112 18 0
T0127 245–271 27 0
T0130 102–114e 13 9
T0153 131–154e 24 19
T0168 1–32e 32 8
T0168 131–146 16 0
T0168 153–165 13 0
T0174 27–36 10 8
T0174 75–89 15 0
T0174 198–211 14 0
T0174 228–250 23 0
T0174 272–281 10 0
T0174 303–314 12 0
T0174 353–372 20 0
T0174 403–417e 15 15
T0183 1–27e 27 0
T0185 130–145 16 1
T0185 445–457e 13 11

a CASP target ID
b Residue sequence numbers included in gap region
c Length of gap region
d The number of residues from the target sequence gap region
whose positions were not available in the native structure PDB file
e Terminal gap region

Table 3 Gap regions in test set

Targeta Regionb Lengthc Missing
residuesd

T0089 107–121 15 0
T0089 357–369 13 0
T0089 394–419e 26 26
T0090 1–13e 13 0
T0090 150–159 10 5
T0096 3–12 10 2
T0096 203–239e 37 9
T0100 115–128 14 0
T0100 249–262 14 0
T0101 168–197 30 0
T0104 62–73 12 0
T0104 130–139 10 0
T0110 107–128e 22 22
T0115 1–10e 10 4
T0116 55–71 17 0
T0116 549–563 15 0
T0116 571–580 10 0
T0116 606–621 16 0
T0116 673–683 11 0
T0116 687–811e 125 46
T0117 1–16e 16 11
T0118 140–149e 10 4
T0121 248–372e 125 0
T0122 165–177 13 7
T0124 1–15e 15 1
T0124 227–242e 16 2
T0128 1–15e 15 11
T0132 1–15e 15 10
T0141 1–20e 20 0
T0141 48–58 11 0
T0146 310–325e 16 1
T0149 37–53 17 0
T0149 81–90 10 0
T0149 114–125 12 0
T0149 287–296 10 0
T0151 144–164e 21 21
T0154 1–10e 10 2
T0154 288–309e 22 19
T0155 121–133e 13 13
T0161 147–156e 10 1
T0162 246–255 10 0
T0164 72–82 11 0
T0165 30–40 11 0
T0165 92–103 12 0
T0166 139–150e 12 5
T0172 105–123 19 0
T0172 235–244 10 0
T0172 257–299e 43 5
T0184 14–24 11 0
T0187 48–59 12 0
T0187 84–95 12 0
T0187 253–281 29 0
T0187 289–304 16 0
T0191 158–167 10 0

a CASP target ID
b Residue sequence numbers included in gap region
c Length of gap region
d The number of residues from the target sequence gap region
whose positions were not available in the native structure PDB file
e Terminal gap region
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conformation on the entire structure. Ramachandran
plots were created with the program PROCHECK [25].
While analyzing native structures, only the selected
chain of the native structure was used (see Table 1).
Non-standard atom groups (‘‘HETATM’’ entries) in
structure files as well as residues containing multiple
alternative locations for atoms were ignored. All struc-
ture files were examined to create an alignment between
model and native structure for fitting manually.

Table 4 shows average RMSDs obtained for the
training set from modeling using 1: N alignments created
by all combinations of stem overlap and alignment
ranking, as well as for each of the stem overlap and
ranking approaches. Shown for comparison are average
RMSDs for initial models, built from the initial align-
ment with gap regions modeled using MODELLER’s
own loop modeling. The averages were calculated over
all proteins in the training set, and for models, over all
five models created per protein. Average RMSDs are
presented for entire structures and for gap regions.

This initial prestudy of the training set showed that
using no stem overlap produced the lowest-quality
models while there was no great difference between
models produced using overlaps of three and ten resi-
dues. For stem overlaps of three and ten residues,
average RMSDs of entire structures were higher than
those of the main templates, but lower than those of the
initial models, i.e., final models were improved. The
most significant difference between alignment-ranking
approaches was that when combined with no stem
overlap, solvation energy produced models of higher
quality than the other two rankings. However, these
models were still of lower quality than models created
using stem overlap. Though the difference was not great,
ranking by alignment score produced the lowest-quality
models for all stem overlaps.

In terms of structure RMSD, a stem overlap of ten
residues and ranking by GenTHREADER score pro-
duced best results, while in terms of gap-region RMSD a
stem overlap of three residues and ranking by alignment
score proved best. However, there were no great differ-
ences in average quality between any of the combina-
tions using a stem overlap of three or ten residues.

Although the PROCHECK program suite reports
several structural features, e.g., Ramachandran plots,
stereochemical parameters, hydrogen bonding (pack-
ing), etc., in this study we focused on the Ramachan-
dran. A Ramachandran plot indicates whether the
backbone of a structure has a configuration that is
unusual and therefore likely to be incorrect. Since the
model building assumes that the backbone is correct,
this a major quality measure for models. In this study,
five models were generated for each target, within
approximately 1 Å of each other (see above). To esti-
mate the average quality of the backbone in these
structures, averages were computed for the percentage of
residues in the different regions of the Ramachandran
plots, i.e., most favorable (core), allowed, generously
allowed and disallowed. That is, the five models for each
modeling approach resulted in four averages.

The Ramachandran plots for the training set (not
shown) were in line with RMSD values, in that the ap-
proaches using no stem overlap produced the worst
values (lower percentage of residues in most favored
regions and higher percentage of residues in disallowed
regions). There were no significant differences in average
Ramachandran plot values between different alignment
rankings. Stem overlaps of three and ten residues pro-
duced average Ramachandran values similar to those of
initial models, but slightly higher than native structures
and main template structures.

When selecting a combination of stem overlap and
ranking approaches, it was decided to favor good values
for entire-structure RMSD over gap-region RMSD val-
ues. The reason for this was that even though the focus of
loopmodeling is on the loops themselves, the final goal is a
high-quality model of the entire protein. Favoring the
entire-structure RMSD may enable the gap regions to
influence the fold, while using an approach based on
favoring the gap- region RMSD does not. Furthermore,
using the gap-region RMSD might be misleading; loop
configurations may alter due to environmental factors,
e.g., temperature. Thus, a method for loop modeling was
proposed using a stem overlap of ten residues and ranking
of alignments by the GenTHREADER neural-network
score. This method was then applied to the test set.

Table 4 Average RMSD for
training set

a Average RMSD from native
structures for all proteins in
training set
b SD of RMSD from native
structures
c Average RMSD from native
conformations for all gap
regions in training set
d SD of RMSD from native
conformations of gap regions

Category of structures Structure RMSD Gap region RMSD

Average (Å)a SDb Average (Å)c SDd

Main template structures 11.73 9.7 n/a n/a
Initial models 14.75 8.3 6.21 3.6
Solvation energy, no overlap 16.14 9.5 7.38 4.4
Solvation energy, overlap 3 13.39 8.4 5.68 3.4
Solvation energy, overlap 10 12.93 8.1 5.16 3.2
Alignment score, no overlap 22.51 18.4 8.98 10.2
Alignment score, overlap 3 13.83 8.2 4.61 3.1
Alignment score, overlap 10 13.32 8.3 4.63 3.5
GenTHREADER score, no overlap 21.77 18.6 9.70 10.0
GenTHREADER score, overlap 3 13.70 8.1 4.97 2.7
GenTHREADER score, overlap 10 12.57 8.4 5.13 3.0
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All gap-region sequences in the test set were ex-
tracted. To each sequence segment was added the ten
immediately preceding and succeeding residues, where
possible. The extended sequence was then submitted to
GenTHREADER. All of GenTHREADER’s filtering
options were disabled. The highest scoring alignment as
determined by GenTHREADER’s neural network was
selected to model the gap region. Alignments to native
structures were ignored. The local alignments produced
by GenTHREADER were integrated into the initial
alignment between the target sequence and main tem-
plate structure to create a 1: N alignment, each gap re-
gion adding one sequence to the alignment. Figure 2
shows the method applied to CASP target T0191.

The MODELLER program was used to build five
models for the initial alignment (initial models) as well
as for each 1: N alignment (final models). The models
from the test set were evaluated using the same three
measures as with the training set. The average RMSD
between the five models and the native structure for each

target sequence was used to reflect the general outcome
of each modeling approach. Results were evaluated both
over all gap regions and over terminal gap regions (lo-
cated at the C-terminus or N-terminus of the protein
chain) and non-terminal gap regions separately. Because
of significantly better results for non-terminal gap re-
gions, these were evaluated further. For some of the
most interesting results a Student’s t-test was performed
to determine the statistical significance. For this,
Microsoft Excel’s statistical functions (TTEST and
TINV) were used to do a paired, two-tailed t-test with
initial data and final data as input sets. That is, the de-
grees of freedom (df) were calculated according to Eq. 1:

df ¼ ðn1 � 1Þ þ ðn2 � 1Þ ð1Þ

where n1 and n2 represent the number (population) of
initial and final averagemodels, e.g., the change inRMSD
between initial and final structures results in n1=29 and
n2=29 (omitting target sequences/native structures where
RMSD could not be computed; see Table 5). The critical
values for rejecting the hypothesis that the two popula-
tions are the same at probability P (here P=0.05) are
obtained from the t-distribution given the degrees of
freedom, e.g., for df=56 the critical value is 2.00 (ob-

Fig. 2 The method derived from the training set applied to CASP
target T0191
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tained by the Microsoft Excel TINV function; critical
values for the t-test are available in most textbooks on
statistics). The true critical value TRMSD(initial-final) was
calculated by Eq. 2:

t ¼ Y1 � Y2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððs1Þ2=n1Þ þ ððs2Þ2=n2Þ
q ð2Þ

where Yi represents the mean in each population i, and si
is the standard deviation (SD) in each population. Using
Eq. 2 results in TRMSD(initial-final)=1.36. Thus, the
hypothesis is not rejected since the critical value is not
exceeded; P>0.05. This is also shown by using the
Microsoft Excel TTEST function, which results in a
probability of 0.18, i.e., greater than 0.05. The implica-
tion was that the change in RMSD between initial and
final models is not significant.

Results

The initial study of the training-set proteins suggested
that a method for loop modeling of gap regions using a
stem overlap of ten residues and ranking of alignments
by the GenTHREADER neural-network score pro-

duced the best results. This setup was applied to the test
set.

Table 5 shows the average RMSDs for initial models
and final models. The change in RMSD from initial
models to final models is shown both in Å ngströms and
as a percentage of initial model RMSD. The averages
were calculated over all five models built from each
alignment. Two of the targets failed modeling (see Dis-
cussion). The change in RMSD between initial and final
models ranged between 85% lower to 34% higher,
compared to the initial models. For 21 of the 31 targets
(68%), the final models had a better average RMSD
than the initial models. Of the remaining targets, two
failed modeling and eight produced final models of
lower quality than the initial models. The average
change for final models was 7% lower RMSD compared
to initial models.

For the 54 gap regions in the test set, the average
change in RMSD from initial to final models ranged
between 84% lower RMSD to 160% higher RMSD (see
Table 6). Five gap regions could not be evaluated since
they belonged to one of the proteins that failed model-
ing, and 21 gap regions in the final models showed an
average RMSD higher than the initial models. Four gap
regions could not be evaluated because of too many

Table 5 Average RMSD from
native structures

a CASP target ID
b RMSD between the native
structure and the main template
structure used to model the
protein
c Average RMSD and SD for
initial models
d Average RMSD and SD for
final models
e Change in average RMSD
from initial models to final
models. Negative values indi-
cate improvements
f Modeling from 1:N alignment
failed

Targeta Structure RMSD

Template (Å)b Initial modelsc Final modelsd Changee

Average (Å) SD Average (Å) SD (Å) (%)

T0089 17.38 17.74 0.2 17.49 0.1 �0.25 �1
T0090 1.90 5.10 0.6 6.83 0.7 1.73 34
T0096 15.47 23.69 0.7 18.24 0.3 �5.45 �23
T0100 3.00 6.86 0.4 7.02 0.3 0.16 2
T0101 14.62 16.46 0.2 n/af n/af n/af n/af

T0104 12.96 15.27 0.2 14.85 0.4 �0.42 �3
T0110 6.94 6.58 0.3 7.23 0.3 0.65 10
T0115 7.72 9.54 0.2 9.57 0.1 0.03 0
T0116 38.10 46.34 0.5 38.99 0.2 �7.35 �16
T0117 6.81 7.57 0.2 7.46 0.2 �0.11 �1
T0118 23.44 20.38 0.8 19.80 0.6 �0.58 �3
T0121 4.99 97.18 1.3 14.11 0.1 �83.07 �85
T0122 2.77 3.60 0.2 3.00 0.1 �0.60 �17
T0124 31.57 44.32 1.1 42.42 0.9 �1.90 �4
T0128 1.24 4.48 0.3 4.41 0.4 �0.07 �2
T0132 3.93 5.60 0.4 5.15 0.6 �0.45 �8
T0141 8.56 15.52 1.1 13.09 0.3 �2.43 �16
T0146 9.80 12.95 0.6 10.94 0.1 �2.01 �16
T0149 21.84 21.23 0.3 20.69 0.2 �0.54 �3
T0151 5.38 5.58 0.5 5.38 0.3 �0.20 �4
T0154 3.72 4.64 0.4 4.44 0.3 �0.20 �4
T0155 0.91 0.85 0.0 0.86 0.0 0.01 1
T0161 18.11 19.02 0.4 18.27 0.1 �0.75 �4
T0162 21.67 22.50 0.6 22.64 0.5 0.14 1
T0164 14.61 14.90 0.3 14.51 0.4 �0.39 �3
T0165 14.26 16.29 0.2 15.73 0.2 �0.56 �3
T0166 3.61 4.89 0.6 4.98 0.5 0.09 2
T0172 21.28 31.89 0.7 22.53 0.2 �9.36 �29
T0184 19.85 16.97 0.3 17.02 0.4 0.05 0
T0187 20.48 21.43 0.2 n/af n/af n/af n/af

T0191 6.00 7.24 0.1 6.51 0.1 �0.73 �10
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Table 6 Average RMSD from native conformation of gap regions

Targeta Regionb Gap region RMSD

Templatec Initial modelsd Final modelse Changef

Average (Å) SD Average (Å) SD (Å) (%)

T0089 107–121 1AUA 7.41 0.5 4.73 0.1 �2.68 �36
T0089 357–369 7ODC:A 6.37 1.5 6.33 0.2 �0.04 �1
T0089 394–419i 1AUK n/ag n/ag n/ag n/ag n/ag n/ag

T0090 1–13i 1F82:A 3.48 0.7 4.03 0.9 0.55 16
T0090 150–159 1CM3:A 1.70 0.5 1.81 0.1 0.11 6
T0096 3–12 1VJT:A 3.25 0.4 3.21 0.3 �0.04 �1
T0096 203–239i 1JCU:A 10.82 0.8 10.48 0.4 �0.34 �3
T0100 115–128 1V86:A 3.77 0.5 4.35 0.2 0.58 15
T0100 249–262 1OAC:A 7.21 0.5 4.78 0.3 �2.43 �34
T0101 168–197 1PFO n/ah n/ah n/ah n/ah n/ah n/ah

T0104 62–73 1PFO 3.60 0.2 4.02 0.3 0.42 12
T0104 130–139 1TBM:A 3.02 0.5 3.24 0.2 0.22 7
T0110 107–128i 1FUI:A n/ag n/ag n/ag n/ag n/ag n/ag

T0115 1–10i 1PIE:A 1.90 0.9 1.85 0.4 �0.05 �3
T0116 55–71 1K9D:A 5.03 0.7 5.92 0.1 0.89 18
T0116 549–563 1GKR:A 7.73 0.2 7.28 0.1 �0.45 �6
T0116 571–580 1E9S:E 2.81 0.1 2.64 0.2 �0.17 �6
T0116 606–621 1AYL 6.02 1.0 6.58 0.4 0.56 9
T0116 673–683 16PK 5.47 0.2 1.91 0.7 �3.56 �65
T0116 687–811i 1MOJ:A 58.95 2.2 16.61 0.1 �42.34 �72
T0117 1–16i 1HZ4:A 1.61 0.6 2.68 0.0 1.07 67
T0118 140–149i 1PFO 1.82 0.3 3.20 0.1 1.38 76
T0121 248–372i 1GVF:A 102.68 1.8 16.14 0.1 �86.54 �84
T0122 165–177 1IWG:A 2.75 0.4 2.79 0.3 0.04 1
T0124 1–15i 1GM5:A 5.31 1.0 7.54 0.1 2.23 42
T0124 227–242i 1BE3:B 5.65 0.3 3.97 0.9 �1.68 �30
T0128 1–15i 1JB0:B 0.46 0.4 1.20 0.6 0.74 160
T0132 1–15i 1BYB 0.99 0.4 1.34 0.5 0.35 35
T0141 1–20i 1DN1:A 6.50 0.6 6.74 0.4 0.24 4
T0141 48–58 1TVF.A 3.69 0.4 4.14 0.1 0.45 12
T0146 310–325i 1SF9:A 5.43 1.8 7.57 0.1 2.14 39
T0149 37–53 1ACC 4.78 1.0 6.40 0.2 1.62 34
T0149 81–90 1LDJ:A 3.92 0.2 2.74 1.1 �1.18 �30
T0149 114–125 1LRW:A 5.08 0.4 5.58 0.2 0.50 10
T0149 287–296 1DF0:A 4.16 0.9 3.75 0.2 �0.41 �10
T0151 144–164i 1FIQ:C n/ag n/ag n/ag n/ag n/ag n/ag

T0154 1–10i 1OYG:A 2.35 0.5 2.37 0.7 0.02 1
T0154 288–309i 1H80:A 0.10 0.1 0.25 0.2 0.15 157
T0155 121–133i 1L5J:A n/ak n/ag n/ag n/ag n/ag n/ag

T0161 147–156i 1YGE 3.28 0.7 5.08 0.0 1.80 55
T0162 246–255 1AV1:A 4.18 0.4 3.17 0.2 �1.01 �24
T0164 72–82 1TVF:A 4.90 0.4 4.76 0.2 �0.14 �3
T0165 30–40 1VK3:A 5.13 0.3 4.40 0.5 �0.73 �14
T0165 92–103 1I3Q:A 5.42 0.3 5.20 0.2 �0.22 �4
T0166 139–150i 1BYB 3.57 0.2 2.90 0.6 �0.67 �19
T0172 105–123 1GPR 6.75 0.2 4.84 0.4 �1.91 �28
T0172 235–244 1UFK:A 5.81 0.9 1.65 0.3 �4.16 �72
T0172 257–299i 1C3C:A 25.85 1.3 13.93 1.0 �11.92 �46
T0184 14–24 1I4S:A 3.69 0.6 0.81 0.1 �2.88 �78
T0187 48–59 1DQR:A n/ah n/ah n/ah n/ah n/ah n/ah

T0187 84–95 1IWG:A n/ah n/ah n/ah n/ah n/ah n/ah

T0187 253–281 2ACY n/ah n/ah n/ah n/ah n/ah n/ah

T0187 289–304 1FNO:A n/ah n/ah n/ah n/ah n/ah n/ah

T0191 158–167 1TGO:A 4.56 0.2 2.41 0.1 �2.15 �47
a CASP target ID
b Residue sequence numbers included in gap region
c Local template for gap region
d Average gap region RMSD and SD for initial models
e Average gap region RMSD and SD for final models
f Change in average gap region RMSD from initial models to final models. Negative values indicate improvements
g Too many residues were missing in native structure file for RMSD to be calculated.
h Modeling from 1:N alignment failed
i Terminal gap region
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missing residues in native structure files. The remaining
24 gap regions had an improved RMSD. This is 44% of
all gap regions and 53% of those, which could be eval-
uated. The average change for all gap regions was a 1%
higher RMSD.

There was a large difference between the results for
terminal and non-terminal gap regions; terminal gap
regions ranged from 84% lower to 160% higher RMSD.
Thirty-two percent of terminal gap regions showed an
improvement in RMSD and the average change was a
22% increase in RMSD. The non-terminal gap regions
ranged from 78% lower to 34% higher RMSD. Fifty-
three percent of the non-terminal gap regions showed a
decrease in RMSD. Discounting gap regions, which
could not be evaluated, this figure was 63%. The average
RMSD improvement for non-terminal gap regions was
12%.

The average RMSD for all non-terminal gap regions
in initial and final models of the proteins in the test set is
shown in Fig. 3. The relation between the change in gap-
region RMSD and the length of the region is shown in
Fig. 4 for both terminal and non-terminal regions.

The GenTHREADER confidence measure revealed
that 14 of the template structures used in the initial
alignments had a confidence level of ‘‘certain,’’ 11 tem-
plate structures had a confidence level of ‘‘high’’ and six
structures had a confidence level of ‘‘medium.’’ The
average RMSD for the entire structure for confidence
level ‘‘certain’’ was 11.3 Å, for ‘‘high’’ it was 12.8 Å and
for ‘‘medium’’ it was 14.1 Å . The average improvements
to the final models were 1.1 Å ; for confidence level
‘‘certain’’ it was 0.8 Å, for ‘‘high’’ it was 1.7 Å, and for

‘‘medium’’ it was 0.7 Å . When a good initial template
(with low RMSD to the native structure) was identified,
the method outlined in this paper preformed better than
MODELLER’s loop modeling. The change in RMSD
for non-terminal gap regions showed that 9 out of 27
loop regions using the outlined approach had improve-
ments larger than 1 Å (average 2.4 Å) compared to
initial models. Only one gap region in the initial models
had more than 1 Å (1.6 Å) lower RMSD than in final
models. The remaining 17 gap regions resulted in
changes less than 1 Å between initial and final models.

The change in Ramachandran plots from initial to
final models (not shown) showed no clear correlation to
RMSD values. According to the number of residues in
the most favored regions of the Ramachandran plots,
there was on average some degradation in final models
compared to initial models. The average number of
residues in disallowed regions, however, remained un-
changed.

Significance tests were performed and evaluated
using a two-tailed t-test with a significance level of
0.05. The t-test (see Material and methods) for the
improvement in average RMSD of entire structures
between initial and final models was not statistically
significant (TRMSD-structure(initial-final))=1.36, P>0.05,
df=56, t-test probability=0.18). Using the t-test for
the average gap region, the RMSD improvement be-
tween initial and final models in the entire test set was
not significant (TRMSD-gaps(initial-final))=1.57, P>0.05,
df=88, t-test probability=0.12). Significance tests for
the change of terminal gap regions and non-terminal
gap regions revealed that the terminal gap region
change in RMSD was not significant (TRMSD-gaps(initial-

final)-terminal=1.37, P>0.05, df=34, t-test probabil-
ity=0.18). The improvement for non-terminal gap re-
gions, however, was statistically significant (TRMSD-
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gaps(initial-final)-non-terminal= 2.41, P<0.05, df=52, t-test
probability=0.020). For the nine proteins in the test
set that contained no terminal gap regions, the average
change in entire-structure RMSD was an improvement
of 4%. The t-test probability was statistically signifi-
cant (TRMSD-structure(initial-final)-non-terminal gaps=2.51,
P<0.05, df=16, t-test probability=0.023).

Discussion

There is now general agreement [2] that changes in the
nature of structure modeling have made these categories
(comparative modeling, fold recognition, and new fold
methods) outdated, e.g., improved sequence-comparison
techniques have blurred the boundary between com-
parative modeling and fold recognition.

The aim of the work presented was to determine
whether a fold-recognition approach to loop modeling
could improve the quality of protein models. In partic-
ular, when loop regions are long and suitable confor-
mations are difficult to find, alternative approaches must
be investigated. This approach applied fold recognition
to sequence regions in a sequence-structure alignment,
which were not covered by the structural template. The
result of this was a 1: N alignment created from the
initial sequence-structure alignment through the addi-
tion of local template structures. For this purpose, we
have used GenTHREADER as a working tool. The
framework for the performed work treated the protein
structure to be unknown.

To identify local templates with respect to finding the
possible solutions, three different parameters were
identified: alignment score, solvation energy, and
GenTHREADER’s combined neural-network score.
These measures were here believed to capture features
that made it possible to find a good solution when
modeling the structure. An addition to these features
was the length of stem overlap, which has previously
been identified as a major feature for determining the
loop configuration. A short overlap is challenging to
integrate with the rest of the model, while a long stem
overlap can introduce difficulties in modeling by having
two completely different template structures for one se-
quence of residues. The impact of this is that different
modeling algorithms may require different lengths of
stem overlap for optimal results. Another aspect of
varying stem-overlap length is that it changes the se-
quence for fold recognition. This could change the
template structure suggested for the gap region, which in
turn can affect the model quality. Using no stem overlap
produced severe impact on the results, confirming that
stem regions do have an influence on the conformation
of gap regions. Stem overlaps of three and ten residues
produced results of similar quality to each other, and
were better than no overlap. It is possible that better
results could be achieved for some length between three
and ten, or greater than ten.

The approach selected for the proposed method was
made from evaluation of the training set. There were no
significant differences between the best-performing ap-
proaches. The best approaches according to the struc-

Fig. 4 Change in gap region
RMSD by gap region length
and terminalness

137



tures created from the training set were a stem overlap of
ten residues and ranking by GenTHREADER score (for
entire structures), and a stem overlap of three residues
and ranking by alignment score (for gap regions). When
deciding which approach to use, it was decided to favor
good results for entire-structure RMSD, and thus a ten
residues overlap and ranking by GenTHREADER score
were selected. A useful measure for ranking of align-
ments is distinguished by a high correlation to the
change in RMSD. As expected, there was a general
tendency for gap regions with low RMSD to have low
solvation energy, a high alignment score and a high
GenTHREADER score. However, the GenTHREAD-
ER score selected for use in the proposed method did
not seem to show a higher correlation to the change in
RMSD of gap regions than ranking by solvation energy
or alignment score, indicating that gap-region alignment
ranking could be improved. Ranking by alignment
score, the approach most similar to a traditional
homology loop modeling produced the lowest quality
models for the training set for all stem overlaps. This
indicates that a fold recognition approach is able to
capture additional information to create better models.

The data set for this study was chosen from the
prediction targets used in CASP4 and CASP5. Struc-
tures obtained from the PDB occasionally revealed dis-
crepancies from associated CASP sequences, e.g.,
missing residues in structures, as shown in Table. 2 and
3. The missing residues often corresponded to gap re-
gions in the sequence-structure alignment, especially for
terminal gap regions. The missing residues may have
introduced unwanted bias on the model building (tem-
plate structure alignments) and the evaluation of the
models (comparing to native structures). A decrease in
quality and reliability is naturally assumed with
increasing number of missing residues, especially in
terminal regions. To overcome the missing-residue
problem, sequences could have been extracted from
PDB structure files to ensure sequences and structures
would match. However, this would not reflect a realistic
process where the protein structure is unknown.

Model building failed for two targets, T0101 and
T0187, due to an alignment of the target sequence to two
or more very different structures. Because of nearby gap
regions and the stem overlap of ten residues, the align-
ment for T0187 contained three template structures
covering the same sequence. The alignment for T0101
contained a short gap region (less than nine residues)
near a longer gap region (more than nine residues).
Here, the short gap region may have interfered with the
integration between the long gap region’s template and
the main template structure. One possible solution to
these modeling problems could be to treat gap regions
separated by a small number of residues as one sequence
for threading. This would replace the template structure
or structures with one template covering both gap re-
gions.

The approach outlined was evaluated based on the
average of five generated models for each alignment. For

each model, RMSD for both the entire structure and the
separate loop regions were measured in addition to
Ramachandran values. It might be argued that the
evaluation should be done on the best model generated
from each alignment. The problem then shifts to iden-
tifying the best model for each alignment. However,
determining the best model is difficult and usually based
on human intervention. To eliminate this, the average
was used.

It might be argued that loop configuration is dy-
namic. That is, loops are generally believed to alter
configuration due to environmental factors, e.g., B-fac-
tor. The influence of this mobility is difficult to evaluate
in structure prediction. This is reflected by the RMSD
value in the evaluation. However, even if loops con-
tained dynamics allowing them to alter the configura-
tion, the decreased RMSD shows significant
improvement to at least one possible loop configuration,
namely the one contained by the native structure.

A simple test of examining the gap-region energy by
the Gromacs molecular dynamics software [35, 36],
performed by taking the initial potential energy at time
zero and ignoring the remaining time steps, revealed
for the target sequence T0191, sequence residues 158–
167, that the gap-region energy of final models was on
average 135 kJ mol�1 from the native structure (SD of
84.5), while that of initial models was on average
889 kJ mol�1 from the native structure (SD of 221).
Thus, the improvement in RMSD also reflected de-
creased gap-region energy. However, if this is a general
feature is yet to be determined and should be investi-
gated further.

Applying the approach to a larger dataset, i.e., the
test set, the results indicated that modeling gap regions
by fold recognition is indeed a promising approach.
While the method did not perform well on gap regions
located at the C-terminus or N-terminus of a chain, so
called dangling regions, non-terminal gap regions were
modeled more accurately. For the two very long-termi-
nal gap regions (125 residues each), the fold-recognition
approach showed great improvement from the models
calculated by MODELLER. However, this is rather
because MODELLER is not suited for modeling long-
terminal gap regions than because of merits of the fold-
recognition approach. Disregarding these artificially
positive results, performance for terminal gap regions
appears even worse.

The longest non-terminal gap regions successfully
modeled in the test was 19 residues long. T0101 and
T0187, which failed modeling, contained the two longest
non-terminal gap regions in the test set (30 and 29 res-
idues, respectively), which may indicate that the method
is not suited for longer gap regions. In the training set,
however, non-terminal gap regions of 20, 23, and 27
residues were modeled successfully.

One potential problem was the presence of alignment
gaps in local alignments. These were not specifically
dealt with, but were left for MODELLER’s loop-mod-
eling function to handle. It is possible that restricting the
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use of local alignments with too many gaps could lead to
better models.

As the only input needed is a sequence-structure
alignment, the method can be applied to alignments
created through either comparative modeling or fold
recognition. In the integration of local alignments into
the main sequence-structure alignment, a completely
mechanistic approach was taken. The 1:N alignments
could likely have been improved by further intensive
fine-tuning. Since the method as presented does not need
any human intervention, it could be implemented as an
automated server.

The approach used here could probably be improved
by further adjustment of parameters such as stem
overlap or development of better criteria for the ranking
of alignments. However, the features used, i.e.,
GenTHREADER score, solvation energy, and align-
ment score, demonstrated that they certainly play a role
in the prediction of the gap regions. This could also
involve identifying better strategies or tools for ranking
possible local folds. In this study GenTHREADER was
used. However, there exist a number of other tools that
can be regarded as suitable for this approach, e.g.,
THREADER, 3D-PSSM, and LOOPP. Also, as with
traditionally applied fold recognition, performance will
improve with time as more experimentally determined
structures are made available and added to the fold
database.

While average results of final models were better than
those of MODELLER’s initial loop modeling, results
were not consistently better. However, it is argued here
that as a rule of thumb it is better to use the approach
outlined here than not using any gap-region template.
At the very least it provides a complement to existing
techniques. It is hoped that further work may improve
the method and indicate scenarios where the method can
be expected to produce improved results.

While the method proposed has been compared to
the loop modeling in the program MODELLER, it
would be of great interest to perform a more thorough
comparison to other loop-modeling methods. Also, the
performance for longer gap regions should be investi-
gated.

Models created by the proposed method were not
universally improved. However, it was shown that for
non-terminal gap regions in the test set and for the
proteins that contained them, the average RMSD was
improved. These improvements were shown to be sta-
tistically significant.

References
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